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ABSTRACT

Autonomous robot systems are being
proposed for a variety of missions including
the Mars rover/sample return mission. Prior
to any other mission objectives being met,
an autonomous robot must be able to
determine its own location. This will be
especially challenging because location
sensors like GPS, which are available on
Earth, will not be useful, nor will INS
sensors because their drift is too large.
Another approach to self-localization is
required.

In this paper, we describe a novel approach
to localization by applying a problem-
solving methodology. The term “problem-
solving” implies a computational technique
based on logical representational and control
steps. In this research, these steps are
derived from observing experts solving
localization problems. The objective is not
specifically to simulate human expertise but
rather to apply its techniques where
appropriate for computational systems. In
doing this, we describe a model for solving
the problem (Ref. 1) and a system built on
that model, called localization control and
logic expert (LOCALE), which is a demon-
stration of concept for the approach and the
model. The results of this work represent the
first successful solution to high-level control
aspects of the localization problem.

Keywords: Knowledge-based control,
robotics
INTRODUCTION

Interest has been growing in the
development of autonomous mobile robot
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systems. For example, autonomous mobile
robots have been proposed for the Mars
rover/sample return mission. In addition,
applications for such systems are being
proposed for military, industrial, and
scientific endeavors. Missions include
advanced reconnaissance, battle
damage/contamination assessment, and
exploration for cartographic, geographic,
and geologic concerns. In each of these
missions, an autonomous mobile robotic
agent would be used in place of a human
agent for cost savings and safety reasons. In
order for a robotic agent to perform the
above missions, it must be able to perform
navigation tasks. These tasks generally
include locating oneself on a map,
determining a route to a specified location,
performing some operation at that location,
and continuing on to other locations or
returning. The first of these tasks, locating
oneself on a map, is the most critical
because all the other functions rely on the
agent having and maintaining accurate
knowledge of self-location. The
environments for these tasks are usually
large outdoor spaces where environmental
features are much larger than the robot, and
the entire environment cannot be observed
all at one time from the robot's sensors.
Unambiguous, human-made landmarks and
other location tools are not available.

There are several systems used by aircraft
and other navigational systems to perform
localization. They include global positioning
systems (GPS) and inertial navigation
systems (INS). GPSs use radio signal
returns from orbiting satellites to determine
an agent's current position on the Earth. The
resolution of these systems is quite good and
would preclude the need to solve the
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localization problem for Earth-based
scenarios. However, localization is a major
problem for space exploration. No GPS
satellites exist for Mars. It will not be cost-
efficient to put a GPS system in place for
this relatively low usage, so in the near term,
autonomous systems on Mars will need the
capability to localize. While INSs also
provide localization information, they
unfortunately experience drift on the order
of feet per hour over the long run and meters
per second in the short run, making these
systems inadequate for localization in
ground-based robot systems.

THE LOCALIZATION PROBLEM

Problem Description

The objective of the localization problem is
specifying the current viewpoint and
viewing direction in the map coordinate
system. Knowledge of self-location is
essential to any agent that will interact with
an external environment. If self-location is
defined in terms of the map coordinate
system, then knowledge of it makes all other
map data accessible. Given the constraints
of current technology (e.g., videocameras,
digital maps), self-localization becomes a
translation from one input domain into
another. For our research, two data sources
were explored: visual information and map
information.

At an abstract level, localization can be
modeled as three interacting processes (see
Figure 1). Two of the processes are
perceptual: they identify the pertinent
information from the view of the image and
from the map. The inputs from a
videocamera are a series of pixels, each
defining a grey level or color. These need to
be preprocessed to determine meaningful
symbolic labels like hill, valley, saddle, etc.
The inputs from a digital map are elevation
points in a grid pattern over the map area.
These, too, need to be preprocessed into
meaningful symbolic labels. Ideally, both of
these processes are able to operate in both
data-driven and hypothesis-driven modes. In
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the data-driven mode, they reason bottom-
up from the input data, gleaning all they can
from new data and integrating it with old
data. In the hypothesis-driven mode, they
reason top-down and search for specified
data of a certain type or in a specific
location. The third process determines the
correspondence between the features in the
map and the features in the view.
Correspondence is determined by matching
features from the map and the view. This
matching should be able to occur in both
directions: map to view and view to map.
This capitalizes on the results of data-driven
reasoning in each domain and uses those
results to drive hypothesis-driven reasoning
in the other. The search for matches should
be guided by knowledge of the environment
and heuristics that reduce the computational
complexity of the search. The
correspondence process mediates between
the two perceptual processes. For example,
it translates between the map's plan-view
(down-looking) representation, where
elements are north or west of each other,
and the image's lateral (side-looking) view
where elements are left and right or in front
of each other.

Localization Knowledge
Correspondence Matching

Feat ure Feature
Extraction Extraction Perception

Figure 1. Top-level Model of the Localization
Process (The perception process extracts
features from the map and the view of the image.
Matching determines the correspondence
betwesen the view and map features. Knowledge
is used to determine the localization of the agent
on the map.}
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Problem Approach

Formally, the localization problem is
matching image features to map features and
using that information to hypothesize a
current viewpoint. The goal of localization
is to determine an estimate of the location
where the image was shot and the direction
from which it was shot (i.e., to derive a
viewpoint hypothesis). In the case where
one unambiguous estimate cannot be
derived, a list of prioritized viewpoint
hypotheses is generated. These viewpoint
hypotheses constitute the best estimates
derived along with rank-order preference for
them.

Because the objective of this research was to
develop a model to provide high-level
control for localization, it determined
strategies for effectively and efficiently
generating and evaluating viewpoint
hypotheses.

The rationale for using feature-matching
techniques is that there is simply too much
data to deal with individually. This is
essentially an argument of granularity. Both
raw map and image data are digitized for
input to a computational system; however,
the granularity of this digitization is
extremely small in order to provide the
computer with as much data as possible. The
prospect of matching each picture element,
or pixel, in the visual sensor input data to a
point on the map is daunting. The approach
of combining individual map and sensor
data elements into features reduces the
search required for matching. In this
approach, many data elements are combined
into geographic features and are dealt with
on the level of hills, valleys, gaps, and so
forth. Humans performing this task use data
elements on the level of geographic features.
It is therefore a natural representation level
to communicate the computer system'’s
abilities to its human builders and observers.

Demonstration Constraints

For this research, test cases with specific
map and sensor data have been explored. In
these test cases there are two available
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inputs: a topographic map and a single video
sensor image. These inputs are assumed to
be processed by a low-level processing
system, which is not part of this research.
Figure 2 shows an example view. Figure 3
shows the area of the topographic map used
in this problem.

The rationale for limiting the inputs is that
they are a minimal set of inputs. If a system
can be built that works effectively with this
constrained environment, it can likely be
expanded to work in domains with richer
inputs. The limit on the visual sensor to one
input frame is quite severe. This means that
no stereo or image-to-image information is
available. The limits of a normal camera are
also quite tight—the angle of view is
limited. So, while a panoramic or preferably
a full-circle view would give more data, we
chose to explore what can be gained from
the standard limited camera view. In
addition to limiting the viewing angle from
side to side, the standard camera also limits
the viewing angle from top to bottom. So
the data about the location on which the
camera is standing, which could be quite
useful, is unavailable. The main limitations
on the map data are the resolution and the
fact that it is limited to elevation data. Our
goal was to focus on large outdoor
environments, so we eliminated human-
made features from our scenarios and picked
areas where their effect was minimal. Thus,
the elevation data in the digital map is
essential and was readily available.

This work assumes that a low-level image
and map processing system processes the
raw image signal and map elevation data
and sends processed information to
LOCALE. The result of this processing is
the location and classification of features in
the map and image. Map features are peaks,
valleys, ridges, etc. Image features are
peaks, valleys, gaps, ridges, saddles, and
inclines. Figure 4 shows the processed map
information. The image and map processing
system was simulated for this work because
computational systems are only just being
developed to this effect (Refs. 2 and 3).

- LOCALE can query the simulated image



Figure 2. Example Videocamera View (In this example of a videocamera view, the most prominent features
are the large valley in the middle and the two protrusions on either side of it in the front. Other valleys and peaks

also appear in the view.)

and map processing system for specific data
as required. The simulated image and map
processing system replies by describing the
map and image features (e.g., hills, valleys,
etc.) at varying levels of detail.

Finally, the localization problem is actually
a class of problems that fall on a spectrum
determined by the amount of a priori
information available to the system. Figure
5 shows the localization spectrum. Near one
cnd of the spectrum are update problems
wherc a lot of @ priori information exists. In
this region the typical problem is verifying
one's location after a short move from a
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known location, Update problems are easier
than dropoff problems because the agent has
an indication of current location in an
update problem. The agent needs to test
actual sensor data against expected sensor
data based on estimated location. In the
dropoff scenario the agent must determine
the estimated location in addition to testing
its validity. In dropoff problems the agent
has no a priori knowledge of where it is on
the map. The research we have done
addresses the dropoff problem and works
with no a priori knowledge, not even a
compass heading.



Figure 3. Example Topographic Map of Teton Reglon
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Figure 4. Processed Information from the Map
(The processed map information is represented in a
semantic network with proximity links between
adjoining features.)
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RELATED WORK

Traditional computational approaches to the
localization problem and related problems
have developed in several areas: pattern
recognition, control and representation
systems, and computer vision research.

Classic pattern recognition approaches to
the localization problem have differed from
this work in two aspects: their reliance on
low-level matching and their reliance on a
priori knowledge.

Past work has explored low-level signal
matching techniques as opposed to frame-
based approaches for correlating images
with maps. There are two signal domains in
which this work can be pursued: the image
domain and the map domain. More work has
been done in the image domain. Ernst and
Flinchbaugh (Ref. 4) matched estimated
features with sensed features and required a
known sensor location within a small
neighborhood. Stein and Medioni (Ref. 5)
explored localization using panoramic
horizons as the features. This approach
requires extensive pre-computation of
indexed synthetic horizon maps and then
matches the actual horizon to these. This
approach also requires a full 360° view. As
for the map domain, Lavin's work (Ref. 6)
centered around determining what depth
map could cause a two-dimensional (2-D)
projection. It requires multiframe moving
images.

The HILARE project (Ref. 7) sought to
develop an experimental testbed on which to
study general robotics, and robot perception
and planning. The position referencing
subsystem on HILARE used infrared
triangulation operating in areas where fixed
beacons were installed. This allowed for
position determination either relative to
objects and specific environment patterns or
in a constructed frame of reference.

Beyond the low-level matching, some
attention has been paid to control for low-
level image processing. Arkin et al.(Ref. 8)
explored an integrated system for the
interpretation of visual data in a mobile
robot testbed. This work essentially
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explored the low-level processing tasks and
relied heavily on a priori knowledge of
expected location. In related work,
Fennema, et al. (Refs. 9, 10, and 11) use a
hierarchy of representation and control
techniques to solve the planning concerns
for control uncertainty but do not examine it
in light of specific localization problems. In
addition, some research has explored
advanced representational structures.
Binford (Ref. 12) and Kriegman, et al. (Ref.
13) explore a hierarchical representation
model for robot navigation focusing on
interior environments. Smith and Strat (Ref.
14) begin to explore a frame hierarchy and a
community of independent processes for
solving outdoor problems with human-made
landmark recognition. Andress and Kak
(Ref. 15) explore knowledge-based control
for accumulating evidence and controlling
reasoning in a hierarchical spatial reasoning
system with a computer program called
production system environment for
integrating knowledge with images
(PSEIKI) that reasons about interior
environments.

Traditionally, vision system approaches
have only examined the update problem.
Update implies a priori knowledge, an
accurate estimate of current location.
Examples of such systems include the work
by Davis, et al. (Ref. 16) on DARPA's
Autonomous Land Vehicle (ALV) program,
Carnegie-Mellon University's Navlab
project [17], and Lawton, Levitt, et al. (Refs.
18, 19, 20, 21, 22 and 23).

Thompson, et al. (Refs. 24 and 25) define
the aspects of the localization problem and
specifically the dropoff problem in large-
scale environments.

The research described here uses a different
approach where abstract representations of
both the map and image were generated by
extracting high-level features from each
domain. The correspondence between these
features is then computed in this higher-
level abstract domain.

The work of Thompson, Pick, et al. (Ref.
25, 26 and 27) is closely related to this
research. Here, protocol analyses of experts



indicated that humans solving localization
problems benefit from the following
strategies:

Concentrate on the view first.
Landmark features should be
organized into configurations.
Information about terrain at the
viewpoint is important.
Multiple hypotheses need to be
generated and examined.
Hypotheses should be compared
using a disconfirmation strategy.
The ability to move to alternate
viewpoints is important.

I Y

From work with experts, we made the
following general observations:

e Grouping things into
configurations is important—
These configurations are linear
and contain relationships among
the constituent entities. This
serves to constrain the search
because the more complex a
feature is the more specific the
search can be. And,
configurations are more complex
than the features that compose
them.

» Working at various levels is
important—At times it is useful
to take an overall view of the
area or the map. At other times it
is important to focus on
increasingly minute details of an
area. It is important to be able to
swap back and forth between
these levels, too.

» Heuristic generation and
testing of hypotheses is
important—For example,
humans use the fact that a great
deal of information is required to
fully accept a hypothesis, while
very little is required to reject
one.

» Data-driven and hypothesis-
driven reasoning is used—
Early on, data about the
viewpoint are gathered and
interrogated—this is data-driven
reasoning. Once enough data are
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present to construct sufficiently
interesting hypotheses, they can
drive the reasoning.

THE MODEL

From the discussion on human experts in the
previous section, two principles stand out:

» Grouping objects into composite
entities focuses attention and
reduces search.

» Representing data and working at
multiple levels allows
opportunistic and agenda-driven
reasoning to work cooperatively.

Grouping Objects

From a purely mathematical perspective,
grouping objects into composites for
matching has clear significance. If one is
trying to match two sets of features (e.g.,
trying to match image features to map
features) and there are five features in the
first set and 40 in the second, then the
number of possible matches is 90,536,361.

This calculation is

min(m,n)

ol _m!
=0 j! (-t (m-)!
where m and n are the cardinality of the sets
(in this case 5 and 40). If, however, the first
set is actually grouped into two groups: one
of three and one of two, and the second set
is divided into eight groups of three and
some singletons, then the number of
possible matches between the groups of
three in each set is only nine. The group of
three from the first set could match any of
the eight, or none at all. So, from a
mathematical perspective, grouping clearly
assists matching. In computational terms,
grouping objects into composites and then
working with the composites reduces the
search space of the problem.

Grouping is observed in expert performance
in the localization problem. Successful



experts group individual features into
configurations. The configurations observed
and used are linear and generally radial from
the subject. The expert realizes that there are
fewer groupings of hill-valley-hill in a
straight line on the map than there are
individual hills or valleys. So the expert
chooses to reason at the configuration rather
than the feature level.

As for the model, the goal is to capture the
groupings that facilitate the heuristic
solution to the localization problem.
Practically, this means an enumeration of
the terms experts use in problems of this
type and a thorough understanding of the
interrelationships of these terms. This
understanding leads to illumination of
constraints and other rules of thumb to focus
matching and other reasoning processes for
localization.

Multiple Levels of Representation and
Reasoning

The second major principle of the model is
that working at multiple levels provides the
ability for opportunistic- and agenda-driven
reasoning to work cooperatively. Data
required for the model fall across a spectrum
of levels of complexity. The levels of data
required in the model reflect the derivative
nature of the data. Low-level data are the
raw inputs from the simulated image and
map processing system. They consist of
brief statements of fact, for example, that a
certain hill is at a certain location. Higher-
level data, including configurations, possible
configuration matches, and viewpoint
hypotheses derive from them.

Data at different levels are very different.
Raw data are immutable facts. Derived data
are less strong. It is useful to distinguish
permanent and persistent data in this
context. As the system approaches a given
localization problem in a given geographic
area, that is one problem-solving episode;
there are some data that will be permanent
to this problem-solving episode, and some
that will not. The permanent data are facts
like, “There is a hill at coordinate 335,432.”
Less permanent data (we use the term
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persistent data) may fall in and out of favor.
Persistent data is a specialized example of a
requirement for nonmonotonic reasoning.
Hypotheses are examples of persistent data.
At one point in the episode a hypothesis
may look very promising, it may lose
credibility, then gain it again as more data
are gathered, but it is not truly temporary
because even when it appears unlikely, the
mere fact that a hypotheses has been
explored to a certain degree of detail is
important and should be preserved and not
discarded as one would be tempted to do
with false information. Like systems
requiring full nonmonotonic reasoning,
persistent data requires that the logical
dependencies of conclusions are maintained;
however, this is not a case where data will
later be retracted, per se, as in a full non-
monotonic system. In contrast, persistent
data will not decrease the amount of
knowledge held by a system (it will always
grow), but this knowledge will simply have
preference values that may change
(increasing and decreasing) over time;
however, all of the information used to solve
a given problem is temporary in the sense
that it holds for only one localization
episode. In the next episode, when another
given problem in another given geographic
area is undertaken, all of these data will be
gone, unlike the domain-specific
information retained from problem to
problem within a given geographic area.

In addition, we observe that two approaches
to reasoning are employed by successful
human experts. First, they use a data-driven
approach to the problem, where they are
gathering all the information they can bring
to bear on the problem at hand. In this
approach the expert is building up complex
representations of the world. This is bottom-
up reasoning from raw data. Once these
representations have been built, and the
pertinent data have been gleaned from them
(e.g., there is a big valley in the middle of
the image with a hill on either side,
therefore, the configuration hill-valley-hill is
important), then hypothesis-driven reasoning
can begin (e.g., go look for hill-valley-hill
configurations in the map). This is top-down
reasoning from derived information. It is
important to use both data- and hypothesis-



driven approaches because a data-driven
approach works well when little is known
about the problem at hand, but a hypothesis-
driven approach focuses the search when
specific hypotheses exist. And, it is
important to be able to alternate between
them during the course of a problem-solving
episode. A strategic reasoning
superstructure provides the capability for the
system to assess its current state, select
among alternatives for the next step, and
choose the appropriate one. This is the self-
conscious control of the system because the
break points provided in the strata of
reasoning components are the opportunities
for evaluation and selection of the next
course of action.

THE APPROACH

The approach used for this research was to
understand the features in the domain
relevant to solving localization and then to
construct the representational and control
structures to work with this information.

The individual features are hills, valleys,
walls, etc. Image features have properties
like membership in a group of similar
features (valleys, hills, gaps) and relations to
other features in the image (being right or
left of one another, occlusion) and height in
the frame. Map features have properties like
location, slope, relation to other features
(north-of, south-of, etc.), and elevation. The
current implementation limits features to
points on an X, Y coordinate. This
limitation is used for simplicity of
processing. The most significant of these
properties are the relations among features.
These relations are used to define
configurations of features. One type of
configuration is a linear configuration where
three or more objects are in a line. In this
case the relation between the first two
objects is the same as between the second
and third objects.

Hypotheses are expressions of potential
solutions (or partial potential solutions) to
the localization problem at hand. Multiple,
conflicting hypotheses may be under
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consideration at any one time. There are
three types of hypotheses: feature-match
hypotheses, configuration-match
hypotheses, and viewpoint hypotheses.
Feature-match hypotheses acknowledge the
possibility that a particular map feature may
be a particular image features. These are
constrained by matching rules derived from
the possible visual appearance of map
features. For example, a saddle from the
map may appear as either a valley, a saddle,

or a gap in the image. Only possible

matches need to be posited. Configuration-
match hypotheses are statements of the
potential correspondence between a
configuration in the map and a configuration
in the image. These are constrained by the
feature matches. For a configuration-match
hypothesis to be retained, not only must the
configuration forms match (two linear and
three component configurations may be
matched, but a linear configuration with
three components and a right-angle
configuration with four components may not
be matched), but the individual features
must be compatible. That is, the appropriate
feature-match hypotheses must exist.
Finally, viewpoint hypotheses are the
outgrowth of configuration-match
hypotheses. If two configurations do indeed
match, then there is a limited area from
which they can be viewed to give the
appearance in the image. The viewpoint
hypotheses are the representation of this. In
addition to the individual components that
must match for it to be true, the viewpoint
hypothesis includes a description of the area
where the observer must be located. This
area is constrained to be within certain map
coordinates limited by the visibility and
intervisibility of the features in the image as
related to their potential match partners from
the map.

Representation Issues

The representation components of the model
use a hierarchical semantic network.
Figure 6 shows the data categories of the
representation components. The lowest level
data is the raw data input from the simulawed
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Figure 6. Data Categorles in the Computational Model of Localization

image and map processing system.
Successively higher levels of data represent
abstracted, interpolated, or otherwise
derived data that the system has concluded
from the input data. The components of the
semantic network are the objects and the
relations between them. The components are
represented in frames and the relations are
represented in slots in the frames.

There are actually several hierarchies that
are appropriate to this problem. The main
data representation hierarchies are the
configuration hierarchy and the feature
taxonomy. Hierarchies are also used for
rules and relations.

Individual map and image features are
represented as instances of the classes
defined in a domain-specific feature
taxonomy that divides features into image
features and map features. Image features
are GAPS, IMAGE-RIDGES (so called to
distinguish them from ridges that appear in
the map), IMAGE-SADDLES, IMAGE-
VALLEYS, INCLINES, and PEAKS. These
are all of the elements that can be uniquely
distinguished in an image. Map features are
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divided into BENCHES, DEPRESSIONS,
PROTRUSIONS, and WALLS.
DEPRESSIONS are divided into RE-
ENTRANTS and VALLEYS. VALLEYS
are divided into BASINS, DRAWS,
GULLIES, HANGING-VALLEYS, and
MAP-SADDLES. BASINS are divided into
BOWLS and CIRQUES. MAP-SADDLES
are divided into COLS and PASSES.
PROTRUSIONS are divided into BUTTES,

PEAK-PRIMITIVES, RIDGES, and
SPIRES. RIDGES are divided into
BUTTRESSES, SHOULDERS, and

SPURS. WALLS can be distinguished into
HEADWALLS.

Control Issues

There are many types of expertise brought
to bear on localization problems. High-level
reasoning expertise can select from among
several high-level alternatives:

» Understand the viewpoint,
» Understand the map,
« Generate and test hypotheses.



In addition, these high-level reasoning
processes can call on a number of lower
level subroutines to perform their functions:

» Gather map data,

« Gather image data,

+ Scrutinize the incoming data and
connect them to known data,
Match features,

Locate configuration,

Match configurations,

Establish viewpoint hypotheses,
Evaluate and refine viewpoint
hypotheses.

Each of these reasoning steps (both high-
level and low-level) is a specialized
subroutine. These subroutines can
encapsulate just enough information to
perform one specific function. The
implementation represents them
independently and weaves them together as
appropriate (e.g., where a high-level
function calls one or more low-level
functions). And, it coordinates the actions of
the multiple experts.

THE SYSTEM

Figure 7 shows the system diagram of the
computer implementation running on a Sun
workstation using KEE® (by Intellicorp)
and lisp. Data flow in from the simulated
image and map processing system and are
posted on either the map or the image
knowledge bases (KBs). These KBs are
built on top of the taxonomy KB, which
contains the problem-specific data about the
localization problem and the geographic
region in general. The taxonomy is the
hierarchy of geographic features that occur
in this area. The control structures are the
reasoners and rule bases that scrutinize the
map and image information, taking into
account their relationships within the
taxonomy. The results of this scrutiny form
the basis for the hypotheses that are posted
in the hypothesis KB. Further scrutiny of the
hypotheses may lead the control structures
to send queries back to the simulated image
and map processing system for more data.
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Figure 7. LOCALE System Diagram

These data will arrive as new postings to the
image and map KBs.

The levels of representation of problem-
specific information from lowest to highest
are:

Input data (map and image),
Feature-match hypotheses,
Configurations (map and image),
Configuration-match hypotheses,
Viewpoint hypotheses.

¢ o o & @

As an input datum arrives it is plugged in as
an instance of one of the classes in the
hierarchy. This allows it to inherit certain
properties from its super classes and to be
reasoned about as a member of the class.

“The feature taxonomy provides the basis for

feature matching. Table 1 shows a feature-



Table 1. Feature-Match Matrix(Potential features from the map and the image are compared for match

quality.)

Gaps
Map-Features
Benches
Depressions
Re-entrants
Valleys
Basins
Bowls
Cirques
Draws
Gullies
Hanging-valleys
Map-Saddles
Cols
Passes
Protrusions
Buttes
Peak-primitives
Ridges
Buttresses
Shoulders
Spurs
Spires
Walls
Headwalls
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match matrix between image and map
features. Feature matches are ranked on a
scale from O to 5, bad to good, where 0

indicates that a map feature can never

appear as an image feature (for example, a
gully in the map will never appear as a peak
in the image), and 5 indicates a preferred
match (for example, a peak in the image
matches well with a peak in the map).

Reasoning is divided into task-specific
subroutines and proceeds in the manner
described in the approach section above.
Components are high-level (strategic), and
low-level (specific tasks). High-level
components are the conscious reasoners of
the system. They pick the strategic direction
in which the system should proceed, initiate
that work, evaluate its performance, and
then choose the next strategic direction.

Image-
Ridges
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RESULTS

In LOCALE two types of heuristics were
used. The first type of heuristic was the use
of configurations. By considering features in
groups instead of as individuals, search was
limited to those features that were parts of
appropriate groups. The second type of
heuristic was the use of category limitations.
Only map features of the appropriate type
were considered for matching with the
image features. In addition, matches were
prioritized based on proximity in the feature
hierarchy, so that stronger matches could be
considered first. Each heuristic is useful, but
the real power of this approach came from
the combination of both heuristics. The
result was to constrain the search space to

JS——



only those map features that were parts of
appropriate configurations and were of the
correct type to match with the image
features. The effect of this is to determine
the subset of features that meets the
configuration constraints and to determine
the subset of features that meets the
category constraints, and then to take the
intersection of those two subsets as the
search space. We can quantify the benefits
of this approach for an example problem.
After three levels of map data detail and two
levels of image data detail have been loaded
into the system, there are thirty-seven map
features and eight image features. The
number of possible matches between these

two sets is 6.48914 x 1016, The power of
this approach is that very few possible
matches are actually considered and
explored. Using the configuration heuristic,
there are only 98 map configurations that
match the current image configuration.
Using the category heuristic, there are only
52 possible matches between the image
features and map features that are
constrained by the compatibility of their
categories. Combining the results of those
two heuristics, there are only twelve
configuration-match hypotheses that can be
developed into viewpoint hypotheses. This
reduction of the search space is dramatic.
Because this is a heuristic approach, its
performance cannot be guaranteed in the
same way an algorithm's performance can.
The reduction in search depends on the
uniqueness and identifiability of the feature
categories and the availability of
configurations; however, this magnitude of

search reduction was consistently observed
among all the test cases. Table 2
summarizes the state space reductions
observed in both this and other test cases.
The prospect of exploring and evaluating 10
to 20 test cases is reasonable. And, even if
the correct solution is not always selected as
the best alternative at any one time, the fact
that it exists among the small, select set of
alternatives is significant.

CONCLUSIONS

This work has analyzed the components of
the localization problem. The solution of
this problem is a critical component to
future work on autonomous mobile robot
systems like those proposed for missions
such as the Mars rover/sample collector.
Localization has the potential to become a
computationally insurmountable problem.
However, heuristic strategies for high-level
control can be employed to combat this
challenge. Two such strategies are the use of
configurations of features to control feature
matching and the use of category
limitations. The LOCALE system has been

implemented to demonstrate these
strategies.
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Table 2. Comparison of Test Cases

Number of Number of Viewpoint
Map Features Image State Space  Hypotheses
Test Case Features Explored
Moran 37 8 2.0 x 1012 12
Teewinot 37 5 6.1 x 107 12
Bivouac 37 6 2.0 x 10° 20
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